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Abstract
Using the numerical diagonalization method, we investigate superconductivity
and related ferromagnetism in the one-dimensional two-orbital Hubbard model
with a finite band splitting at less than half filling. We obtain a superconducting
(SC) region with the Luttinger liquid parameter Kρ > 1 and confirm anomalous
flux quantization in the SC state. It is found that the SC phase appears near
the partially polarized ferromagnetic phase. We also calculate various pairing
correlation functions to clarify the nature of the SC phase. Detailed analysis of
these functions indicates that the triplet pairing between the nearest neighbour
sites is relevant to the superconductivity. This suggests that ferromagnetic
fluctuation plays an important role for the superconductivity.

1. Introduction

The orbital degrees of freedom in strongly correlated electron systems are expected to play
an important role for various interesting phenomena such as the metal–insulator transition,
ferromagnetism and superconductivity [1–6]. In a previous work [7], we studied the multi-
orbital Hubbard model in one dimension, using the numerical diagonalization method.
We found that fully polarized ferromagnetism becomes unstable against partially polarized
ferromagnetism when the exchange (Hund’s rule) coupling J is larger than the value of the
order of the crystal-field splitting �. A superconducting (SC) phase was observed for the
singlet ground state in the vicinity of the partially polarized ferromagnetism.

However, the nature of the SC phase was not sufficiently considered in that work. In
the present work, we investigate the same model to clarify possible mechanisms of the
superconductivity, particularly paying attention to the symmetry of pairing. We analyse the
various pairing correlation functions and discuss the relationship between the ferromagnetism
and the superconductivity.
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2. Model Hamiltonian and Luttinger liquid relation

We consider the following Hamiltonian for the one-dimensional multi-orbital Hubbard model:

H = −t
∑

i,m,σ

(c†
i,m,σ ci+1,m,σ + h.c.) + U

∑

i,m

ni,m,↑ni,m,↓

+ U ′ ∑

i,σ

ni,u,σ ni,l,−σ + (U ′ − J )
∑

i,σ

ni,u,σ ni,l,σ + �

2

∑

i,σ

(ni,u,σ − ni,l,σ )

− J
∑

i,m

(c†
i,u,↑ci,u,↓c†

i,l,↓ci,l,↑ + h.c.) − J ′ ∑

i,m

(c†
i,u,↑c†

i,u,↓ci,l,↑ci,l,↓ + h.c.) (1)

where c†
i,m,σ stands for the creation operator of an electron with spin σ in the orbital m (=u, l)

at site i and ni,m,σ = c†
i,m,σ ci,m,σ . Here, t represents the hopping integral between the same

orbitals and we set t = 1 in this study. The interaction parameters U , U ′, J and J ′ stand for the
intra- and inter-orbital direct Coulomb interactions, the exchange (Hund’s rule) coupling and
the pair-transfer, respectively. � denotes the energy difference between the two atomic orbitals,
that is, crystal-field splitting. For simplicity, we impose the relations J = J ′ and U = U ′ +2J .
In the non-interacting case (U = U ′ = J = 0), the Hamiltonian equation (1) yields
a dispersion relation ε±(k) = −2t cos(k) ± �

2 , where k is the wavevector and ε+(k)(ε−(k))

represents the upper (lower) orbital band energy. When the lowest energy of the upper orbital
band, ε+(0), is larger than the Fermi energy, EkF , electrons occupy only the lower orbital band
and the model is regarded as a single component electron system. Hereafter, we mainly treat
the case with ε+(0) � EkF .

We numerically diagonalize the model Hamiltonian up to 9 sites (18 orbitals) and obtain
the value of Kρ from the ground state energy of finite size systems using the standard Lanczos
algorithm. We use the periodic (antiperiodic) boundary condition for the lower (upper) orbital
band at Ne = 4m + 2 and the antiperiodic (periodic) boundary condition for the upper (lower)
orbital band at Ne = 4m, where Ne is the total electron number and m is an integer. This choice
of the boundary condition removes accidental degeneracy and shows smaller finite size effect
than other boundary conditions.

According to the Luttinger liquid theory, the critical exponents of various types of
correlation functions are determined by a single parameter Kρ [8, 9]. It is predicted that the

SC correlation is dominant for Kρ > 1 (the correlation function decays as ∼r−(1+ 1
Kρ

) in the

Tomonaga–Luttinger (TL) regime and as ∼r− 1
Kρ in the Luther–Emery (LE) regime), whereas

CDW and/or SDW correlations are dominant for Kρ < 1 (the correlation functions decay
as ∼r−(1+Kρ) in the TL regime and as ∼r−Kρ in the LE regime). Here, the LE regime is
characterized by a gap in the spin excitation spectrum, while in the TL regime, the excitation
is gapless. In the case of non-interacting systems, the exponent Kρ is always unity. Thus, the
effective interaction between quasi-particles is attractive for Kρ > 1 whereas it is repulsive for
Kρ < 1.

3. Numerical results

Figure 1 shows the value of Kρ as a function of J (=U ′) for several values of � at the
electron density n = 2/3 (6 electrons/9 sites). The dashed line represents the weak coupling
approximation for Kρ [7]. As J increases, Kρ decreases for a small J , while it increases
for a large J , and then becomes larger than unity. In the region Kρ > 1, the SC correlation
is expected to be the most dominant compared with the CDW and SDW correlations. When
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Figure 1. Kρ as a function of J (=U ′) for n = 2/3 (6 electrons/9 sites) at � = 1.0, 1.2, 1.4, 1.6,

and 1.8. The singlet ground state changes into the partially polarized ferromagnetic (S = 1 or
2) state at U ′ � 1.1, 1.5, 2.1 2.8 and 4.1 for � = 1.0, 1.2, 1.4, 1.6 and 1.8, respectively. The
dashed line represents a weak coupling estimation for Kρ . The inset shows the energy difference
E0(φ) − E0(0) as a function of an external flux φ for n = 2/3 (6 electrons/9 sites) at � = 1.2.
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Figure 2. The singlet pairing correlation functions C(r) = Sll(r), Sl–l(r), Suu(r), Su–u(r),
Sul(r) and the triplet correlation functions Tl–l(r), Tu–u(r), Tul(r), respectively (see text). Here
we show the absolute value of the correlation functions at � = 1.2 and J (=U ′) = 1.48 for
n = 2/3 (6 electrons/9 sites).

J is larger than a certain critical value, the ground state changes into the partially polarized
ferromagnetic state with total spin S = 1 or S = 2 from the singlet state with S = 0.

To confirm the superconductivity, we calculate the lowest energy of the singlet state
E0(φ) as a function of an external flux φ. As shown in the inset of figure 1, anomalous flux
quantization occurs clearly at J ∼ 1.3, where Kρ is about 1.2. When J = 0.4, Kρ is less
than unity and the anomalous flux quantization is not found. We have also confirmed that the
SC state does not vanish even if the pair-transfer term J ′ is omitted. This suggests that the
superconductivity is caused not by the pair-transfer but by the exchange interaction.

In figure 2, we show various types of SC pairing correlation functions C(r) for n =
2/3 (6 electrons/9 sites) at � = 1.2 and J (=U ′) = 1.48. The pairing correlation functions
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are defined by

Sll(r) = 1

Nu

∑

i

〈c†
i,l,↑c†

i,l,↓ci+r,l,↓ci+r,l,↑〉, (2)

Suu(r) = 1

Nu

∑

i

〈c†
i,l,↑c†

i,u,↓ci+r,u,↓ci+r,u,↑〉, (3)

Sl–l(r) = 1

2Nu

∑

i

〈(c†
i,l,↑c†

i+1,l,↓ − c†
i,l,↓c†

i+1,l,↑)

× (ci+r+1↓ci+r,l,↑ − ci+r+1,l,↑ci+r,l,↓)〉, (4)

Su–u(r) = 1

2Nu

∑

i

〈(c†
i,u,↑c†

i+1,u,↓ − c†
i,u,↓c†

i+1,u,↑)

× (ci+r+1,u,↓ci+r,u,↑ − ci+r+1,u,↑ci+r,u,↓)〉, (5)

Sul(r) = 1

2Nu

∑

i

〈(c†
i,l,↑c†

i+1,u,↓ − c†
i,l,↓c†

i+1,u,↑)

× (ci+r+1,u,↓ci+r,l,↑ − ci+r+1,u,↑ci+r,l,↓)〉, (6)

Tl–l(r) = 1

2Nu

∑

i

〈(c†
i,l,↑c†

i+1,l,↓ + c†
i,l,↓c†

i+1,l,↑)

× (ci+r+1↓ci+r,l,↑ + ci+r+1,l,↑ci+r,l,↓)〉, (7)

Tu–u(r) = 1

2Nu

∑

i

〈(c†
i,u,↑c†

i+1,u,↓ + c†
i,u,↓c†

i+1,u,↑)

× (ci+r+1,u,↓ci+r,u,↑ + ci+r+1,u,↑ci+r,u,↓)〉, (8)

Tul(r) = 1

2Nu

∑

i

〈(c†
i,l,↑c†

i+1,u,↓ + c†
i,l,↓c†

i+1,u,↑)

× (ci+r+1,u,↓ci+r,l,↑ + ci+r+1,u,↑ci+r,l,↓)〉, (9)

where C(r) = Sll(r), Suu(r), Sl–l(r), Su–u(r) and Sul(r) denote the singlet pairing correlation
functions on the same site in the lower orbital, on the same site in the upper orbital, between the
nearest neighbour sites in the lower orbital, between the nearest neighbour sites in the upper
orbital, and between lower and upper orbitals on the same site, respectively. Further, Tl–l(r),
Tu–u(r) and Tul(r) are the triplet pairing correlation functions between the nearest neighbour
sites in the lower orbital, between the nearest neighbour sites in the upper orbital and between
lower and upper orbitals on the same site, respectively.

The absolute value of Tu–u(r) is small, but the correlation shows the slowest decay as a
function of r . This result seems to suggest that the relevant pairing of the superconductivity
is the triplet pairing between the nearest neighbour sites in the upper orbital. To indicate
the behaviour of the correlation functions more clearly, we calculate the ratio R(r) between
the pairing correlation function at J (=U ′) = 1.48 and that of J (=U ′) = 0.3, that is,
R(r) = C(r)J=1.48

C(r)J=0.3
. Although the correlation function C(r) decays as the distance r increases,

the function R(r) for the relevant pairing is expected to increase with r , because the value of
Kρ at J = 1.48 is larger than that at J = 0.3, where Kρ is about at 1.26 and 0.93, respectively.
Then, the behaviour of R(r) is expected to be ∼r 0.33.

In figure 3, we show R(r) for Sll(r), Sl–l(r), Suu(r), Su–u(r) and Sul (upper panel) and
the triplet pairing correlation functions Tl–l(r), Tu–u(r) and Tul(r) with the power-law r 0.33

predicted by the Luttinger liquid relation (lower panel), respectively. It indicates that the
function R(r) for Tu–u is much enhanced, especially for longer range pairing correlation.
However, all remains of R(r) except for Tu–u(r) are not enhanced. These results suggest
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Figure 3. The ratio of the singlet pairing correlation functions R(r) = C(r)J=1.48/C(r)J=0.3 for
Sl–l(r), Suu(r), Su–u(r), Sul(r) and that of the triplet correlation functions for Tl–l(r), Tu–u(r),
Tul(r), respectively (see text). The broken line represents the power-law r0.33 predicted by the
Luttinger liquid relation.

that the pairing correlation function in the upper orbital Tu–u(r) is the most relevant pairing
for the superconductivity. Although the system size is too small to compare the slope of the
function R(r) with the power-law enhancement ∼r 0.33 directly, the behaviour of Tu–u seems to
be roughly consistent with the result of the Luttinger liquid relation.

4. Summary and discussion

We have investigated the superconductivity and the related ferromagnetism of the Hubbard
model with two-fold orbital degeneracy, paying attention to the effect of the interplay between
the Coulomb interactions and the band splitting. To obtain reliable results, we have used
the numerical diagonalization method and calculated the critical exponent Kρ based on the
Luttinger liquid theory. In the vicinity of the partially polarized ferromagnetism, we have
found the SC phase, when J exceeds about the energy of �. These behaviours seem to be
very similar to the result of the electron density n > 1 at ε+(0) � EkF , as shown in our
previous work [7]. This suggests that the nature of the SC phase may not depend much on n
so long as the band splitting � is sufficiently large and electrons occupy only the lower orbital
band.

In order to clarify the nature of the superconductivity, we also obtained the various pairing
correlation functions. The analysis of these functions indicates that triplet pairing is relevant
to the superconductivity. This suggests that the ferromagnetic fluctuation may produce the SC
state. In the � = 0 case, the triplet SC phase with spin gap has been already discussed in the
bosonization method [4, 5] and numerical methods [6, 10]. At this stage, we cannot clarify
the relationship between both triplet SC phases. Further study is needed and we would like to
address it in the future.
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